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Preface

The third edition of this book continues the objective of providing coverage of actuarial
mathematics in a fexible manner that meets the needs of several audiences. These range
from those who want only a basic knowledge of the subject, to those preparing for careers
as professional actuaries. All this is carried out with a streamlined system of notation, and a
modern approach to computation involving spreadsheets.

The text is divided into four parts. The frst two cover the subject of life contingencies.
The modern approach towards this subject is through a stochastic model, as opposed to
the older deterministic viewpoint. I certainly agree that mastering the stochastic model
is the desirable goal. However, my classroom experience has convinced me that this is not
the right place to begin the instruction. I fnd that students are much better able to learn
the new ideas, the new notation, the new ways of thinking involved in this subject, when
done frst in the simplest possible setting, namely a deterministic discrete model. After the
main ideas are presented in this fashion, continuous models are introduced. In Part II of the
book, the full stochastic model of life contingencies can be dealt with in a reasonably quick
fashion.

Another innovation in Part II is to depart from the conventional treatment of life contin-
gencies as dealing essentially with patterns of mortality or disability in a group of human
lives. Throughout Part II, we deal with general failure times which makes the theory more
widely adaptable.

Part III deals with more advanced stochastic models. Following an introduction to stochas-
tic processes, there is a chapter covering multi-state theory, an approach which unifes many
of the ideas in Parts I and II. The fnal chapter in Part III is an introduction to modern fnancial
mathematics.

Part IV deals with the subject of risk theory, sometime referred to as loss models. It
includes an extensive coverage of classical ruin theory, a topic that originated in actuarial
science but recently has found many applications in fnancial economics. It also includes
credibility theory, which will appeal to the reader interested more in the casualty side of
actuarial mathematics.

This book will meet the needs of those preparing for the examinations of many of the
major professional actuarial organizations. Parts I to III of this new third edition covers all
of the material on the current syllabuses of Exam MLC of the Society of Actuaries and
Canadian Institute of Actuaries and Exam LC of the Casualty Actuarial Society, and covers
most of the topics on the current syllabus of Exam CT5 of the British Institute of Actuaries.

i
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xx PREFACE

In addition, Part IV of the book covers a great deal of the material on Exam C of the Society
of Actuaries and Canadian Institute of Actuaries, including the topics of Frequency, Severity
and Aggregate Models, Risk Measures, and Credibility Theory.

The mathematical prerequisites for Part 1 are relatively modest. comprising elementary
linear algebra and probability theory, and, beginning in Chapter 8, some basic calculus. A
more advanced knowledge of probability theory is needed from Chapter 13 onward, and
this material summarized in Appendix A. A usual prerequisite for actuarial mathematics is a
course in the theory of interest. Although this may be useful, it is not strictly required. All
the interest theory that is needed is presented as a particular case of the general deterministic
actuarial model in Chapter 2.

A major source of diffculty for many students in learning actuarial mathematics is to
master the rather complex system of actuarial notation. We have introduced some notational
innovations, which tie in well with modern calculation procedures as well as allow us to
greatly simplify the notation that is required. We have, however, included all the standard
notation in separate sections, at the end of the relevant chapters, which can be read by those
readers who desire this material.

Keeping in mind the nature of the book and its intended audience, we have avoided
excessive mathematical rigour. Nonetheless, careful proofs are given in all cases where these
are thought to be accessible to the typical senior undergraduate mathematics student. For
the few proofs not given in their entirety, mainly those involving continuous-time stochastic
processes, we have tried at least to provide some motivation and intuitive reasoning for the
results.

Exercises appear at the end of each chapter. In Parts I and II these are divided up into
different types. Type A exercises generally are those which involve direct calculation from the
formulas in the book. Type B involve problems where more thought is involved. Derivations
and problems which involve symbols rather than numeric calculation are normally included
in Type B problems. A third type is spreadsheet exercises which themselves are divided
into two subtypes. The frst of these asks the reader to solve problems using a spreadsheet.
Detailed descriptions of applicable Microsoft Excel® spreadsheets are given at the end of
the relevant chapters. Readers of course are free to modify these or construct their own. The
second subtype does not ask specifc questions but instead asks the reader to modify the given
spreadsheets to handle additional tasks. Answers to most of the calculation-type exercises
appear at the end of the book.

Sections marked with an asterisk ∗ deal with more advanced material, or with special
topics that are not used elsewhere in the book. They can be omitted on frst reading. The
exercises dealing with such sections are likewise marked with ∗, as are a few other exercises
which are of above average diffculty.

There are various ways of using the text for university courses geared to third or fourth
year undergraduates, or beginning graduate students. Chapters 1 to 8 could form the basis
of a one-semester introductory course. Part IV is for the most part independent of the frst
three parts, except for the background material on stochastic processes given in Chapter 18
and would constitute another one-semester course. The rest of the book constitutes roughly
another two semesters worth of material, with possibly some omissions; Chapter 13 is not
needed for the rest of the book. Chapters 7 (except for Section 7.3.1), 9 and 12 deal with
topics that are important in applications, but which are used minimally in other parts of the
text. They could be omitted without loss of continuity.
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PREFACE xxi

CHANGES IN THE THIRD EDITION

There are several additions and changes to the third edition.
The most notable is a new Chapter 20 providing an introduction to the mathematics of

fnancial markets. It has been long recognized that knowledge of this subject is essential to
the management of fnancial risk that faces the actuary of today.

Other additions include the following:

� Chapter 12, on expenses, has been considerably enlarged to include the topic of proft
testing.

� The chapter on multi-state models has been expanded to include discussion of reserves
and proft testing in suchmodels, aswell as several additional techniques for continuous-
time problems.

� Some extra numerical procedures have been included, such as Euler’s method for
differential equations, and the three-term Woolhouse formulas for fractional annuity
approximations.

� An introduction to Brownian motion has been added to the material on continuous-time
stochastic processes.

� The previous material on universal life and variable annuities has been rewritten and
included in a new chapter dealing with miscellaneous topics. A brief discussion of
pension plans is included here as well.

� Additional examples, exercises, and clarifcation have been added to various chapters.

As well as the changes there has been a reorganization in the material The previous two
chapters on stochastic processes have been combined into one and now appear earlier in the
book as background for the multi-state and fnancial markets chapters. In the current Part IV,
the detailed descriptions of the various distributions have been removed and added as a section
to the Appendix on probability theory.



JWST504-fm JWST504-Promislow Printer: Yet to Come Trim: 244mm × 170mm October 13, 2014 7:17

ii



JWST504-fm JWST504-Promislow Printer: Yet to Come Trim: 244mm × 170mm October 13, 2014 7:17

Acknowledgements

Several individuals have assisted in the various editions of this book. I am particularly indebted
to two people who have made a signifcant contribution by providing a number of helpful
comments, corrections, and suggestions. They are Virginia Young for her work on the frst
edition, and Elias Shiu for his help with the third edition.

There are many others who deserve thanks. Moshe Milevsky provided enlightening com-
ments on annuities and it was his ideas that motivated the credit risk applications in Chapter
10, as well as some of the material on generational annuity tables in Chapter 9. Several
people found misprints in the frst edition and earlier drafts. These include Valerie Michkine,
Jacques Labelle, Karen Antonio, Kristen Moore, as well as students at York University and
the University of Michigan. Christian Hess asked some questions which led to the inclusion
of Example 21.10 to clear up an ambiguous point. Exercise 18.13 was motivated by Bob
Jewett’s progressive practice routines for pool. My son Michael, a life insurance actuary, pro-
vided valuable advice on several practical aspects of the material. Thanks go to the editorial
and production teams at Wiley for their much appreciated assistance. Finally, I thank my wife
Shirley who provided support and encouragement throughout the writing of all three editions.

iii



JWST504-fm JWST504-Promislow Printer: Yet to Come Trim: 244mm × 170mm October 13, 2014 7:17

About the companion website

This book is accompanied by a companion website:

www.wiley.com/go/promislow/actuarial

The website includes:

� A variety of exercises, both computational and theoretical

� Answers, enabling use for self-study.

i

www.wiley.com/go/promislow/actuarial
http://www.wiley.com/go/promislow/actuarial


JWST504-c01 JWST504-Promislow Printer: Yet to Come Trim: 244mm × 170mm September 19, 2014 23:59

Part I

THE DETERMINISTIC LIFE
CONTINGENCIES MODEL
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1

Introduction and motivation

1.1 Risk and insurance

In this book we deal with certain mathematical models. This opening chapter, however, is a
nontechnical introduction, designed to provide background and motivation. In particular, we
are concerned with models used by actuaries, so we might frst try to describe exactly what it
is that actuaries do. This can be diffcult, because a typical actuary is concerned with many
issues, but we can identify two major themes dealt with by this profession.

The frst is risk, a word that itself can be defned in different ways. A commonly accepted
defnition in our context is that risk is the possibility that something bad happens. Of course,
many bad things can happen, but in particular we are interested in occurrences that result
in fnancial loss. A person dies, depriving family of earned income or business partners of
expertise. Someone becomes ill, necessitating large medical expenses. A home is destroyed
by fre or an automobile is damaged in an accident. No matter what precautions you take,
you cannot rid yourself completely of the possibility of such unfortunate events, but what you
can do is take steps to mitigate the fnancial loss involved. One of the most commonly used
measures is to purchase insurance.

Insurance involves a sharing or pooling of risks among a large group of people. The origins
go back many years and can be traced to members of a community helping out others who
suffered loss in some form or other. For example, people would help out neighbours who had
suffered a death or illness in the family. While such aid was in many cases no doubt due to
altruistic feelings, there was also a motivation of self-interest. You should be prepared to help
out a neighbour who suffered some calamity, since you or your family could similarly be
aided by others when you required such assistance. This eventually became more formalized,
giving rise to the insurance companies we know today.

With the institution of insurance companies, sharing is no longer confned to the scope of
neighbours or community members one knows, but it could be among all those who chose
to purchase insurance from a particular company. Although there are many different types
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of insurance, the basic principle is similar. A company known as the insurer agrees to pay
out money, which we will refer to as benefts, at specifed times, upon the occurrence of
specifed events causing fnancial loss. In return, the person purchasing insurance, known as
the insured, agrees to make payments of prescribed amounts to the company. These payments
are typically known as premiums. The contract between the insurer and the insured is often
referred to as the insurance policy.

The risk is thereby transferred from the individuals facing the loss to the insurer. The
insurer in turn reduces its risk by insuring a suffciently large number of individuals, so that
the losses can be accurately predicted. Consider the following example, which is admittedly
vastly oversimplifed but designed to illustrate the basic idea.

Suppose that a certain type of event is unlikely to occur but if so, causes a fnancial loss
of 100 000. The insurer estimates that about 1 out of every 100 individuals who face the
possibility of such loss will actually experience it. If it insures 1000 people, it can then expect
10 losses. Based on this model, the insurer would charge each person a premium of 1000.
(We are ignoring certain factors such as expenses and profts.) It would collect a total of
1 000 000 and have precisely enough to cover the 100 000 loss for each of the 10 individuals
who experience this. Each individual has eliminated his or her risk, and in so far as the estimate
of 10 losses is correct, the insurer has likewise eliminated its own risk. (We comment further
on this statement in the next section.)

We conclude this section with a few words on the connection between insurance and
gambling. Many people believe that insurance is really a form of the latter, but in fact it is
exactly the opposite. Gambling trades certainty for uncertainty. The amount of money you
have in your pocket is there with certainty if you do not gamble, but it is subject to uncertainty
if you decide to place a bet. On the other hand, insurance trades uncertainty for certainty. The
uncertain drain on your wealth, due to the possibility of a fnancial loss, is converted to the
certainty of the much smaller drain of the premium payments if you insure against the loss.

1.2 Deterministic versus stochastic models

The example in Section 1.1 illustrates what is known as a deterministic model. The insurer
in effect pretends it will know exactly how much it will pay out in benefts and then charges
premiums to match this amount. Of course, the insurer knows that it cannot really predict
these amounts precisely. By selling a large number of policies they hope to beneft from
the diversifcation effect. They are really relying on the statistical concept known as the
‘law of large numbers’, which in this context intuitively says that if a suffciently large
number of individuals are insured, then the total number of losses will likely be close to the
predicted fgure.

To look at this idea in more detail, it may help to give an analogy with fipping coins. If we
fip 100 fair coins, we cannot predict exactly the number of them that will come up heads, but
we expect that most of the time this number should be close to 50. But ‘most of the time’ does
not mean always. It is possible for example, that we may get only 37 heads, or as many as 63,
or even more extreme outcomes. In the example given in the last section, the number of losses
may well turn out to be more than the expected number of 10. We would like to know just how
unlikely these rare events are. In other words, we would like to quantify more precisely just
what the words ‘most of the time’ mean. To achieve this greater sophistication a stochastic
model for insurance claims is needed, which will assign probabilities to the occurrence of
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various numbers of losses. This will allow adjustment of premiums in order to allow for the
risk that the actual number of losses will deviate from that expected. We will however begin
the study of actuarial mathematics by frst developing a deterministic approach, as this seems
to be the best way of learning the basic concepts. After mastering this, it is not diffcult to turn
to the more realistic stochastic setting.

We will not get into all the complications that can arise. In actual coin fipping it seems
clear that the results of each toss are independent of the others. The fact that one coin comes
up heads, is not going to affect the outcomes of the others. It is this independence which is
behind the law of large numbers, and which results in outcomes that are usually close to what
is expected. There are some risks, often referred to as systematic or non-diversifable, where
the independence assumption fails, and which can adversely affect all or a large number of
members of a group at the same time. For example, a spreading epidemic could cause life or
health insurers to pay more in claims than they expected. Selling more policies in order to
diversify would not help their fnancial situation. It could in fact make it worse, if the premiums
were not suffcient to cover the extra losses. Severe climatic disturbances causing storms could
impact property insurance in the same way. In 2008, falling real estate prices in the United
States affected mortgage lenders and those who insured mortgage lenders against bad debts,
to the extent that this helped trigger a global fnancial crisis. A detailed discussion of these
matters is not within the scope of this work, and for the most part, the stochastic model we
present will confne attention to the usual insurance model where the risks are considered as
independent. It should be kept in mind however that the detection and avoidance of systematic
risk are matters that the actuary must always be aware of.

1.3 Finance and investments

The second theme involved in an actuary’s work is fnance and investments. In most of the
types of insurance that we focus on in this book, an additional complicating factor is the
long-term nature of the contracts. Benefts may not be paid until several years after premiums
are collected. This is certainly true in life insurance, where the loss is occasioned by the death
of an individual. Premiums received are invested and the resulting earnings can be used to help
provide the benefts. Consider the simple example given above, and suppose further that the
benefts do not have to be paid until 1 year after the premiums are collected. If the insurer can
invest the money at, say, 5% interest for the year, then it does not need to charge the full 1000
in premium, but can collect only 1000/1.05 from each person. When invested, this amount
will provide the necessary 1000 to cover the losses. Again, this example is oversimplifed and
there are many more complications. We will, in the next chapter, consider a mathematical
model that deals with the consequences of the payments of money at various times. A much
more elaborate treatment of fnancial matters, incorporating randomness, is presented in
Chapter 20.

1.4 Adequacy and equity

We can now give a general description of the responsibilities of an actuary. The overriding
task is to ensure that the premiums, together with investment earnings, are adequate to provide
for the payment of the benefts. If this is not true, then it will not be possible for the insurer to
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meet its obligations and some of the insureds will necessarily not receive compensation for
their losses. The challenge in meeting this goal arises from the several areas of uncertainty.
The amount and timing of the benefts that will have to be paid, as well as the investment
earnings, are unknown and subject to random fuctuations. The actuary makes substantial use
of probabilistic methods to handle this uncertainty.

Another goal is to achieve equity in setting premiums. If an insurer is to attract purchasers,
it must charge rates that are perceived as being fair. Here also, the randomness means that it is
not obvious how to defne equity in this context. It cannot mean that two individuals who are
charged the same amount in premiums will receive exactly the same back in benefts, for that
would negate the sharing arrangement inherent in the insurance idea. While there are different
possible viewpoints, equity in insurance is generally expected to mean that the mathematical
expectation of these two individuals should be the same.

1.5 Reassessment

Actuaries design insurance contracts and must initially calculate premiums that will fulfll the
goals of adequacy and equity, but this is not the end of the story. No matter how carefully
one makes an initial assessment of risks, there are too many variables to be able to achieve
complete accuracy. Such assessments must be continually re-evaluated, and herein lies the
real expertise of the actuary. This work may be compared to sailing a ship in a stormy sea.
It is impossible to avoid being blown off course occasionally. The skill is to detect when
this occurs and to take the necessary steps to continue in the right direction. This continual
monitoring and reassessing is an important part of the actuary’s work. A large part of this
involves calculating quantities known as reserves. We introduce this concept in Chapter 2 and
then develop it more fully in Chapter 6.

1.6 Conclusion

We can now summarize the material found in the subsequent chapters of the book. We will
describe the mathematical models used by the actuary to ensure that an insurer will be able
to meet its promised benefts payments and that the respective purchasers of its contracts are
treated equitably. In Part I, we deal with a strictly deterministic model. This enables us to
focus on the main principles while keeping the required mathematics reasonably simple. In
Part II, we look at the stochastic model for an individual insurance contract. In Part III, we
look at more advanced stochastic models and introduce the mathematics of fnancial markets.
In Part IV, we consider models that encompass an entire portfolio of insurance contracts.
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The basic deterministic model

2.1 Cash fows

As indicated in the previous chapter, a basic application of actuarial mathematics is to model
the transfer of money. Insurance companies, banks and other fnancial institutions engage in
transactions that involve accepting sums of money at certain times, and paying out sums of
money at other times.

To construct a model for describing this situation, we will frst fx a time unit. This can
be arbitrary, but in most applications it will be taken as some familiar interval of time. For
convenience we will assume that time is measured in years, unless we indicate otherwise. We
will let time 0 refer to the present time, and time t will then denote t time units in the future.
We also select an arbitrary unit of capital. In this chapter, we assume that all funds are paid out
or received at integer time points, that is, at time 0, 1, 2,…. The amount of money received
or paid out at time k will be called the net cash fow at time k and denoted by ck. A positive
value of ck denotes that a sum is to be received, whereas a negative value indicates that a sum
is paid out. The entire transaction is then described by listing the sequence of cash fows. We
will refer to this as a cash fow vector,

c = (c0, c1,… , cN ),

where N is the fnal duration for which a payment is made.
For example, suppose I lend you 10 units of capital now and a further 5 units a year from

now. You repay the loan by making three yearly payments of 7 units each, beginning 3 years
from now. The resulting cash fow vector from my point of view is

c = (−10,−5, 0, 7, 7, 7).

From your point of view, the transaction is represented by −c = (10, 5, 0,−7,−7,−7).
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One of our main goals in this chapter is to provide methods for analyzing transactions in
terms of their cash fow vectors. There are several basic questions that could be asked:

� When is a transaction worthwhile undertaking?

� How much should one pay in order to receive a certain sequence of cash fows?

� How much should one charge in order to provide a certain sequence of cash fows?

� How does one compare two transactions to decide which one is preferable?

All of these questions are related, and we could answer all of them if we could fnd a
method to put a value on a sequence of future cash fows. If all cash fows were paid at the
same time, or if the value of money did not depend on the time that a payment was made,
the problem would reduce to one of simple addition. We could simply value a cash fow
sequence by adding up all the payments. We cannot proceed in this naive way, however and
must consider the time value of money. It is a basic economic fact that we prefer present to
future consumption. We want to eat the chocolate bar now, rather than tomorrow. We want
to enjoy the new car today, rather than next month. This means of course that money paid to
us today is worth more than money paid in the future. We are no doubt all very familiar with
this fact. We pay interest for the privilege of borrowing money today, which lets us consume
now, or we advance money to others, giving up our present consumption and expecting to
be compensated with interest earnings. In addition, there is the effect of risk. If we are given
a unit of money today, we have it. If we forego it now in return for future payments, there
could be a chance that the party who is supposed to make remittance to us may be unable
or unwilling to do, and we expect to be compensated for the possible loss. A major step in
answering the above questions is to quantify this dependence of value on time.

Readers who have taken courses on the theory of compound interest will be familiar
with many of the ideas. However, our treatment will be somewhat different than that usually
given. One reason for this is that we want to develop the concepts in such a way that they
are applicable to more general situations, as given in Chapters 3–5. A second reason is that
our approach is designed to be compatible with modern-day computing methods such as
spreadsheets.

To conclude this section, we remark that many complications arise when the cash fows
are not exactly known in advance. They may depend on several factors, including random
elements. There may be complicated interrelationships between the various cash fows. These
matters involve advanced topics in fnance and actuarial mathematics and for the most part
will not be dealt with in this book. In Part I we deal mainly with a simplifed model, where all
cash fows are fxed and known in advance. In later parts of the book we will consider certain
aspects of randomness, but will not get into the full extent of complications that can arise.

2.2 An analogy with currencies

To motivate the basic ideas, we will consider frst a completely different problem, which is
nonetheless related to that introduced above. Suppose that I give you 300 Canadian dollars,
200 US dollars and 100 Australian dollars. How much money did I give you? It would be
naive indeed to claim that you received 600 dollars, for clearly the currencies are of different
value. To answer the question we will need conversion factors that allow us to deduce the
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value of each type of dollar in terms of others. Let v(c, u) denote the value in Canadian dollars
of one US dollar. Assume that v(c, u) = 1.05, which means that a US dollar is worth 1.05
Canadian dollars. (Our numbers here are for purposes of illustration only. They are close to the
conversion rates at the time of writing, but they may well have changed considerably by the
time you are reading this.) Similarly, letting a stand for Australian, we will assume that v(c, a)
equals 0.95, which means 95 cents Canadian will buy one Australian dollar. The convention
we are using here, which should be noted for later use, is that the v function returns the value
of one unit of the second coordinate currency in terms of the frst coordinate currency.

There are four more conversion factors of interest, but an important fact is that they can all
be deduced from just these two (or indeed from any two that have a common frst or common
second coordinate). We note frst that if it takes 1.05 Canadian dollars to buy 1 US dollar,
then a single Canadian dollar is worth 1∕1.05 = 0.9524 US dollars. That is,

v(u, c) = v(c, u)−1 = 0.9524, v(a, c) = v(c, a)−1 = 1.0526,

where we use similar reasoning for the Australian dollar.
Next consider v(u, a). We want the amount of US dollars needed to buy one Australian

dollar. We could conceivably effect this purchase in two stages, frst using US money to buy
Canadian, and then using Canadian to buy Australian. Working backwards, it will take 0.95
Canadian to buy 1 Australian, and it will take v(u, c) 0.95 US dollars to buy the 0.95 Canadian.
To summarize,

v(u, a) = v(u, c)v(c, a) = 0.9048.

Our calculations are completed with

v(a, u) = v(u, a)−1 = 1.1052.

The reader may notice, given a typical real-life listing of currency prices, that the rela-
tionships we state here do not hold exactly, but that is due to commissions and other charges.
In the absence of these, they must necessarily hold.

Let us now return to the original problem of determining of how much I paid you. We
must frst select a currency to express the answer in. For example, we could say that the total
was equivalent to 300 + 200v(c, u) + 100v(c, a) = 605 Canadian dollars. We could also say
that the total was equivalent to 300v(u, c) + 200 + 100(u, a) = 576.20 US dollars. Notice as a
shortcut, that we did not need to compute the latter sum (which could be a signifcant saving in
calculation if we had several rather than just three currencies). If the total amount is equivalent
to 605 Canadian, then it must also be equivalent to 605v(u, c) = 576.20 US dollars. Similarly,
the total in Australian dollars can be computed as 605v(a, c) or alternatively as 576.20v(a, u),
both of which are equal to 637 (approximately as there are some rounding differences).

2.3 Discount functions

We now go back to the original situation.Wewant to value a sequence of cash fows, which are
all in the same currency, but which are paid at different times. Conversion factors are needed
to convert the value of money paid at one time to that paid at another. The principles involved




