Fundamentals of Actuarial Mathematics Third Edition S. David Promislow $\frac{d}{dt}_t \bar{\nabla} = \delta(t\bar{\nabla}) + \pi(t) - \mu_{\pi}(t)(b(t) - t\bar{\nabla})$

 $+\pi(t)-\mu_x(t)(b(t)-$

WILEY

 $=\delta(tV+\pi(t)-\mu_x)$

Fundamentals of Actuarial Mathematics

Fundamentals of Actuarial Mathematics

Third Edition

S. David Promislow

York University, Toronto, Canada

This edition first published 2015 © 2015 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SO, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought

Library of Congress Cataloging-in-Publication Data

Promislow, S. David. Fundamentals of actuarial mathematics / S. David Promislow. - Third edition. pages cm Includes bibliographical references and index. ISBN 978-1-118-78246-0 (hardback) 1. Insurance–Mathematics. 2. Business mathematics. I. Title. HG8781.P76 2014 368'.01-dc23

2014027082

A catalogue record for this book is available from the British Library.

ISBN: 9781118782460

Set in 10/12pt Times by Aptara Inc., New Delhi, India

1 2015

To Georgia and Griffith

Contents

	Preface		
	Ackr	owledgements	xxiii
	Abou	it the companion website	xxiv
Pa	art I	THE DETERMINISTIC LIFE CONTINGENCIES MODEL	1
1	Intro	luction and motivation	3
	1.1	Risk and insurance	3
	1.2	Deterministic versus stochastic models	4
	1.3	Finance and investments	5
	1.4	Adequacy and equity	5
	1.5	Reassessment	6
	1.6	Conclusion	6
2	The basic deterministic model		7
	2.1	Cash flows	7
	2.2	An analogy with currencies	8
	2.3	Discount functions	9
	2.4	Calculating the discount function	11
	2.5	Interest and discount rates	12
	2.6	Constant interest	12
	2.7	Values and actuarial equivalence	13
	2.8	Vector notation	17
	2.9	Regular pattern cash flows	18
	2.10	Balances and reserves	20
		2.10.1 Basic concepts	20
		2.10.2 Relation between balances and reserves	22
		2.10.5 Prospective versus retrospective methods	23
	0.11	2.10.4 Recursion formulas	24
	2.11	time snifting and the splitting identity	26

	*2.11 0	Change of discount function	27
	2.12 I	nternal rates of return	28
	*2.13 H	Forward prices and term structure	30
	2.14	Standard notation and terminology	33
	2	2.14.1 Standard notation for cash flows discounted with interest	33
	2	2.14.2 New notation	34
	2.15 \$	Spreadsheet calculations	34
	Notes a	nd references	35
	Exercis	es	35
3	The life	table	39
	3.1 H	Basic definitions	39
	3.2 H	Probabilities	40
	3.3 (Constructing the life table from the values of q_x	41
	3.4 I	Life expectancy	42
	3.5 (Choice of life tables	44
	3.6 \$	Standard notation and terminology	44
	3.7 A	A sample table	45
	Notes a	nd references	45
	Exercise	es	45
4	Life and	nuities	47
	4.1 I	ntroduction	47
	4.2 0	Calculating annuity premiums	48
	4.3 7	The interest and survivorship discount function	50
		4.3.1 The basic definition	50
		4.3.2 Relations between y_x for various values of x	52
	4.4 0	Guaranteed payments	53
	4.5 I	Deferred annuities with annual premiums	55
	4.6 \$	Some practical considerations	56
		4.6.1 Gross premiums	56
		4.6.2 Gender aspects	56
	4.7 \$	Standard notation and terminology	57
	4.8 \$	Spreadsheet calculations	58
	Exercise	es	59
5	Life ins	urance	61
	5.1 I	ntroduction	61
	5.2 0	Calculating life insurance premiums	61
	5.3 1	Types of life insurance	64
	5.4 (Combined insurance-annuity benefits	64
	5.5 I	nsurances viewed as annuities	69
	5.6 8	Summary of formulas	70
	5.7 A	A general insurance-annuity identity	70
		5.7.1 The general identity	70
		5.7.2 The endowment identity	71

	5.8	Standard notation and terminology	72
		5.8.1 Single-premium notation	72
		5.8.2 Annual-premium notation	73
		5.8.3 Identities	74
	5.9	Spreadsheet applications	74
	Exerc	ises	74
6	Insur	ance and annuity reserves	78
	6.1	Introduction to reserves	78
	6.2	The general pattern of reserves	81
	6.3	Recursion	82
	6.4	Detailed analysis of an insurance or annuity contract	83
		6.4.1 Gains and losses	83
		6.4.2 The risk–savings decomposition	85
	6.5	Bases for reserves	87
	6.6	Nonforfeiture values	88
	6.7	Policies involving a return of the reserve	88
	6.8	Premium difference and paid-up formulas	90
		6.8.1 Premium difference formulas	90
		6.8.2 Paid-up formulas	90
		6.8.3 Level endowment reserves	91
	6.9	Standard notation and terminology	91
	6.10	Spreadsheet applications	93
	Exerc	ises	94
7	Fract	ional durations	98
	7.1	Introduction	98
	7.2	Cash flows discounted with interest only	99
	7.3	Life annuities paid <i>m</i> thly	101
		7.3.1 Uniform distribution of deaths	101
		7.3.2 Present value formulas	102
	7.4	Immediate annuities	104
	7.5	Approximation and computation	105
	*7.6	Fractional period premiums and reserves	106
	7.7	Reserves at fractional durations	107
	7.8	Standard notation and terminology	109
	Exerc	lises	109
8	Conti	nuous payments	112
	8.1	Introduction to continuous annuities	112
	8.2	The force of discount	113
	8.3	The constant interest case	114
	8.4	Continuous life annuities	115
		8.4.1 Basic definition	115
		8.4.2 Evaluation	116
		8.4.3 Life expectancy revisited	117

x CONTENTS

9

8.5	The force of mortality		
8.6	Insurances payable at the moment of death	119	
	8.6.1 Basic definitions	119	
	8.6.2 Evaluation	120	
8.7	Premiums and reserves	122	
8.8	The general insurance-annuity identity in the continuous case	123	
8.9	Differential equations for reserves	124	
8.10	Some examples of exact calculation	125	
	8.10.1 Constant force of mortality	126	
	8.10.2 Demoivre's law	127	
	8.10.3 An example of the splitting identity	128	
8.11	Further approximations from the life table	129	
8.12	Standard actuarial notation and terminology	131	
Notes	and references	132	
Exerc	ises	132	
Select	t mortality	137	
91	Introduction	137	

9.1	Introduction	137
9.2	Select and ultimate tables	138
9.3	Changes in formulas	139
9.4	Projections in annuity tables	141
9.5	Further remarks	142
Exerci	ses	142

10	Multiple-life contracts			144
	10.1	Introduc	etion	144
	10.2	The join	nt-life status	144
	10.3	Joint-lif	e annuities and insurances	146
	10.4	Last-sur	vivor annuities and insurances	147
		10.4.1	Basic results	147
		10.4.2	Reserves on second-death insurances	148
	10.5	Momen	t of death insurances	149
	10.6	The gen	eral two-life annuity contract	150
	10.7	The gen	eral two-life insurance contract	152
	10.8	Conting	ent insurances	153
		10.8.1	First-death contingent insurances	153
		10.8.2	Second-death contingent insurances	154
		10.8.3	Moment-of-death contingent insurances	155
		10.8.4	General contingent probabilities	155
	10.9	Duration	n problems	156
	*10.10	Applica	tions to annuity credit risk	159
	10.11	Standar	d notation and terminology	160
	10.12	Spreads	heet applications	161
	Notes and references			161
	Exercis	ses		161

11	Multir	ole-decrei	ment theory	166
••	11.1	Introdu	ction	166
	11.2	The bas	sic model	166
		11.2.1	The multiple-decrement table	167
		11.2.2	Ouantities calculated from the multiple-decrement table	168
	11.3	Insuran	ices	169
	11.4	Determ	ining the model from the forces of decrement	170
	11.5	The ana	alogy with joint-life statuses	171
	11.6	A mach	nine analogy	171
		11.6.1	Method 1	172
		11.6.2	Method 2	173
	11.7	Associa	ated single-decrement tables	175
		11.7.1	The main methods	175
		11.7.2	Forces of decrement in the associated	
			single-decrement tables	176
		11.7.3	Conditions justifying the two methods	177
		11.7.4	Other approaches	180
	Notes	and refer	ences	181
	Exerci	ses		181
12	Expenses and profits			184
	12.1 Introduction			
	12.2 Effect on reserves			186
	12.3	Realisti	ic reserve and balance calculations	187
	12.4	Profit n	neasurement	189
		12.4.1	Advanced gain and loss analysis	189
		12.4.2	Gains by source	191
		12.4.3	Profit testing	193
	Notes	and refer	ences	196
	Exercises		196	
*13	Specia	lized top	ics	199
	13.1	Univers	sal life	199
		13.1.1	Description of the contract	199
		13.1.2	Calculating account values	201
	13.2	Variabl	e annuities	203
	13.3	Pensior	ı plans	204
		13.3.1	DB plans	204
		13.3.2	DC plans	206
	Exerci	ses		207

Pai	rt II	THE STOCHASTIC LIFE CONTINGENCIES MODEL	209
14	Surv	ival distributions and failure times	211
	14.1	Introduction to survival distributions	211
	14.2	The discrete case	212

	14.3	The co	ntinuous case	213
		14.3.1	The basic functions	214
		14.3.2	Properties of <i>u</i>	214
		14.3.3	Modes	215
	14.4	Examp	les	215
	14.5	Shifted	distributions	216
	14.6	The sta	ndard approximation	217
	14.7	The sto	chastic life table	219
	14.8	Life ex	pectancy in the stochastic model	220
	14.9	Stochas	stic interest rates	221
	Notes	and refe	erences	222
	Exerc	sises		222
15	The s	tochastic	e approach to insurance and annuities	224
	15.1	Introdu	ction	224
	15.2	The sto	chastic approach to insurance benefits	225
		15.2.1	The discrete case	225
		15.2.2	The continuous case	226
		15.2.3	Approximation	226
		15.2.4	Endowment insurances	227
	15.3	The sto	chastic approach to annuity benefits	229
		15.3.1	Discrete annuities	229
		15.3.2	Continuous annuities	231
	*15.4	Deferre	ed contracts	233
	15.5	The sto	chastic approach to reserves	233
	15.6	The sto	chastic approach to premiums	235
		15.6.1	The equivalence principle	235
		15.6.2	Percentile premiums	236
		15.6.3	Aggregate premiums	237
		15.6.4	General premium principles	240
	15.7	The var	tiance of $_{r}L$	241
	15.8	Standar	d notation and terminology	243
	Notes	and refe	erences	244
	Exerc	vises		244
16	Simp	248		
	16.1	Introdu	ction	248
	16.2	Varianc	e calculations in the continuous case	248
		16.2.1	Insurances	249
		16.2.2	Annuities	249
		16.2.3	Prospective losses	249
	16.2	16.2.4	Using equivalence principle premium	is 249
	16.3	Varianc	the calculations in the discrete case	250
	16.4	Exact d	listributions	252
		16.4.1	The distribution of Z	252
		16.4.2	The distribution of Y	252

		16.4.3	The distribution of L	252
		16.4.4	The case where T is exponentially distributed	253
	16.5	Some n	non-level benefit examples	254
		16.5.1	Term insurance	254
		16.5.2	Deferred insurance	254
		16.5.3	An annual premium policy	255
	Exerc	eises		256
17	The minimum failure time			259
	17.1	Introdu	iction	259
	17.2	Joint di	istributions	259
	17.3	The dis	stribution of T	261
		17.3.1	The general case	261
		17.3.2	The independent case	261
	17.4	The joi	nt distribution of (T, J)	261
		17.4.1	The distribution function for (T, J)	261
		17.4.2	Density and survival functions for (T, J)	264
		17.4.3	The distribution of J	265
		17.4.4	Hazard functions for (T, J)	266
		17.4.5	The independent case	266
		17.4.6	Nonidentifiability	268
		17.4.7	Conditions for the independence of T and J	269
	17.5	Other p	problems	270
	17.6 The common shock model		271	
	17.7 Copulas			273
	Notes	and refe	erences	276
	Exerc	eises		276

Part III	ADVANCED STOCHASTIC MODELS	279

18

An ii	281		
18.1	Introdu	iction	281
18.2	Markov	v chains	283
	18.2.1	Definitions	283
	18.2.2	Examples	284
18.3	Marting	gales	286
18.4	Finite-s	state Markov chains	287
	18.4.1	The transition matrix	287
	18.4.2	Multi-period transitions	288
	18.4.3	Distributions	288
	*18.4.4	Limiting distributions	289
	*18.4.5	Recurrent and transient states	290
18.5	Introdu	ction to continuous time processes	293
18.6	Poissor	1 processes	293
	18.6.1	Waiting times	295
	18.6.2	Nonhomogeneous Poisson processes	295

	107	р ·		205
	18./	Brownia	an motion	295
		18.7.1	Connection with rendem wells	295
		18.7.2	Litting times	290
		*10.7.4	Fitting times	297
		18.7.4	Conditional distributions	298
		18.7.5	Brownian motion with drift	299
	NT	18./.0	Geometric Brownian motion	299
	Notes	and refe	rences	299
	Exerc	ises		300
19	Multi	-state mo	odels	304
	19.1	Introduc	ction	304
	19.2	The disc	crete-time model	305
		19.2.1	Non-stationary Markov Chains	305
		19.2.2	Discrete-time multi-state insurances	307
		19.2.3	Multi-state annuities	310
	19.3	The con	ntinuous-time model	311
		19.3.1	Forces of transition	311
		19.3.2	Path-by-path analysis	316
		19.3.3	Numerical approximation	317
		19.3.4	Stationary continuous time processes	318
		19.3.5	Some methods for non-stationary processes	320
		19.3.6	Extension of the common shock model	321
		19.3.7	Insurance and annuity applications in continuous time	322
	19.4	4 Recursion and differential equations for multi-state reserves		324
	19.5	.5 Profit testing in multi-state models		327
	19.6	Semi-Markov models		328
	Notes and references			328
	Exerc	ises		329
20	Intro	luction to	a the Methametics of Einspecial Markets	222
20	20.1	Toduction to the Mathematics of Financial Markets		
	20.1	Modelling prices in financial markets		333
	20.2	Arbitrage		333
	20.5	1 Ontion contracts		334
	20.4	20.4 Option contracts		337
	20.5	20.5 The multi-period binomial model		242
	20.0 20.7	7. American ontions		242
	20.7 20.8	x A general financial market		240 212
	20.8 20.0	0.0 A rhitrage-free condition		
	20.7	20.10 Existence and uniqueness of risk-neutral measures		

20.10	Existence and uniqueness of fisk-neutral measures	
	20.10.1 Linear algebra background	353
	20.10.2 The space of contingent claims	353
	20.10.3 The Fundamental theorem of asset pricing completed	357
20.11	Completeness of markets	359
20.12	The Black–Scholes–Merton formula	361

375

Bond markets	
20.13.1 Introduction	364
20.13.2 Extending the notion of conditional expectation	366
20.13.3 The arbitrage-free condition in the bond market	367
20.13.4 Short-rate modelling	368
20.13.5 Forward prices and rates	370
20.13.6 Observations on the continuous time bond market	371
Notes and references	
ises	373
i	Bond markets 20.13.1 Introduction 20.13.2 Extending the notion of conditional expectation 20.13.3 The arbitrage-free condition in the bond market 20.13.4 Short-rate modelling 20.13.5 Forward prices and rates 20.13.6 Observations on the continuous time bond market and references

Part IV RISK THEORY

21	Compound distributions		
	21.1	Introduction	377
	21.2	The mean and variance of S	379
	21.3	Generating functions	380
	21.4	Exact distribution of S	381
	21.5	Choosing a frequency distribution	381
	21.6	Choosing a severity distribution	383
	21.7	Handling the point mass at 0	384
	21.8	Counting claims of a particular type	385
		21.8.1 One special class	385
		21.8.2 Special classes in the Poisson case	386
	21.9	The sum of two compound Poisson distributions	387
	21.10) Deductibles and other modifications	388
		21.10.1 The nature of a deductible	388
		21.10.2 Some calculations in the discrete case	389
		21.10.3 Some calculations in the continuous case	390
		21.10.4 The effect on aggregate claims	392
		21.10.5 Other modifications	393
	21.11	A recursion formula for S	393
		393	
		397	
	Notes	398	
	Exercises		398
22	Risk	assessment	403
	22.1	Introduction	403
	22.2	Utility theory	403
	22.3	Convex and concave functions: Jensen's inequality	406
		22.3.1 Basic definitions	406
		22.3.2 Jensen's inequality	407
	22.4	A general comparison method	408
	22.5	Risk measures for capital adequacy	412
		22.5.1 The general notion of a risk measure	412
		22.5.2 Value-at-risk	413

22.5.3	Tail value-at-risk	413
22.5.4	Distortion risk measures	417
Notes and references		417
Exercises		417

23	Ruin models			420	
	23.1	Introdu	iction	420	
	23.2	A functional equation approach			
	23.3	The ma	artingale approach to ruin theory	424	
		23.3.1	Stopping times	424	
		23.3.2	The optional stopping theorem and its consequences	426	
		23.3.3	The adjustment coefficient	429	
		23.3.4	The main conclusions	431	
	23.4	Distrib	ution of the deficit at ruin	433	
	23.5	23.5 Recursion formulas			
		23.5.1	Calculating ruin probabilities	434	
		23.5.2	The distribution of $D(u)$	436	
	23.6	The co	mpound Poisson surplus process	438	
		23.6.1	Description of the process	438	
		23.6.2	The probability of eventual ruin	440	
		23.6.3	The value of $\psi(0)$	440	
		23.6.4	The distribution of $D(0)$	440	
		23.6.5	The case when X is exponentially distributed	441	
	23.7	The ma	aximal aggregate loss	441	
	Notes	and refe	erences	445	
	Exerc	sises		445	
24	Credi	bility the	еогу	449	
	24.1	Introdu	ictory material	449	
		24.1.1	The nature of credibility theory	449	
		24.1.2	Information assessment	449	
	24.2	24.2 Conditional expectation and variance with respect to another			
		random	n variable	453	
		24.2.1	The random variable $E(X Y)$	453	
		24.2.2	Conditional variance	455	
	24.3	Genera	l framework for Bayesian credibility	457	
	24.4	Classic	al examples	459	
	24.5	Approx	kimations	462	
		24.5.1	A general case	462	
		24.5.2	The Bühlman model	463	
		24.5.3	Bühlman–Straub Model	464	
	24.6	24.6 Conditions for exactness		465	
	24.7 Estimation		tion	469	
		24.7.1	Unbiased estimators	469	
		24.7.2	Calculating Var(\overline{X}) in the credibility model	470	

24.7.2	Calculating Var(\bar{X}) in the credibility model	
--------	---	--

	24.7.3 Estimation of the Bülhman parameters	470 472	
Notes	and references	473	
Exerc	ises	473	
Answers to	o exercises	477	
Appendix	A review of probability theory	493	
A.1	Sample spaces and probability measures	493	
A.2	Conditioning and independence	495	
A.3	Random variables	495	
A.4	Distributions	496	
A.5	Expectations and moments	497	
A.6	Expectation in terms of the distribution function	498	
A.7	Joint distributions	499	
A.8	Conditioning and independence for random variables	501	
A.9	Moment generating functions	502	
A.10	Probability generating functions	503	
A.11	Some standard distributions	505	
	A.11.1 The binomial distribution	505	
	A.11.2 The Poisson distribution	505	
	A.11.3 The negative binomial and geometric distributions	506	
	A.11.4 The continuous uniform distribution	507	
	A.11.5 The normal distribution	507	
	A.11.6 The gamma and exponential distributions	509	
	A.11.7 The lognormal distribution	510	
	A.11.8 The Pareto distribution	511	
A.12	Convolution	511	
	A.12.1 The discrete case	511	
	A.12.2 The continuous case	513	
	A.12.3 Notation and remarks	515	
A.13	Mixtures	516	
Refe	rences	517	
Nota	tion index	519	
Inde	Index		

Preface

The third edition of this book continues the objective of providing coverage of actuarial mathematics in a flexible manner that meets the needs of several audiences. These range from those who want only a basic knowledge of the subject, to those preparing for careers as professional actuaries. All this is carried out with a streamlined system of notation, and a modern approach to computation involving spreadsheets.

The text is divided into four parts. The first two cover the subject of life contingencies. The modern approach towards this subject is through a stochastic model, as opposed to the older deterministic viewpoint. I certainly agree that mastering the stochastic model is the desirable goal. However, my classroom experience has convinced me that this is not the right place to begin the instruction. I find that students are much better able to learn the new ideas, the new notation, the new ways of thinking involved in this subject, when done first in the simplest possible setting, namely a deterministic discrete model. After the main ideas are presented in this fashion, continuous models are introduced. In Part II of the book, the full stochastic model of life contingencies can be dealt with in a reasonably quick fashion.

Another innovation in Part II is to depart from the conventional treatment of life contingencies as dealing essentially with patterns of mortality or disability in a group of human lives. Throughout Part II, we deal with general *failure times* which makes the theory more widely adaptable.

Part III deals with more advanced stochastic models. Following an introduction to stochastic processes, there is a chapter covering multi-state theory, an approach which unifies many of the ideas in Parts I and II. The final chapter in Part III is an introduction to modern financial mathematics.

Part IV deals with the subject of risk theory, sometime referred to as loss models. It includes an extensive coverage of classical ruin theory, a topic that originated in actuarial science but recently has found many applications in financial economics. It also includes credibility theory, which will appeal to the reader interested more in the casualty side of actuarial mathematics.

This book will meet the needs of those preparing for the examinations of many of the major professional actuarial organizations. Parts I to III of this new third edition covers all of the material on the current syllabuses of Exam MLC of the Society of Actuaries and Canadian Institute of Actuaries and Exam LC of the Casualty Actuarial Society, and covers most of the topics on the current syllabus of Exam CT5 of the British Institute of Actuaries.

In addition, Part IV of the book covers a great deal of the material on Exam C of the Society of Actuaries and Canadian Institute of Actuaries, including the topics of Frequency, Severity and Aggregate Models, Risk Measures, and Credibility Theory.

The mathematical prerequisites for Part 1 are relatively modest. comprising elementary linear algebra and probability theory, and, beginning in Chapter 8, some basic calculus. A more advanced knowledge of probability theory is needed from Chapter 13 onward, and this material summarized in Appendix A. A usual prerequisite for actuarial mathematics is a course in the theory of interest. Although this may be useful, it is not strictly required. All the interest theory that is needed is presented as a particular case of the general deterministic actuarial model in Chapter 2.

A major source of difficulty for many students in learning actuarial mathematics is to master the rather complex system of actuarial notation. We have introduced some notational innovations, which tie in well with modern calculation procedures as well as allow us to greatly simplify the notation that is required. We have, however, included all the standard notation in separate sections, at the end of the relevant chapters, which can be read by those readers who desire this material.

Keeping in mind the nature of the book and its intended audience, we have avoided excessive mathematical rigour. Nonetheless, careful proofs are given in all cases where these are thought to be accessible to the typical senior undergraduate mathematics student. For the few proofs not given in their entirety, mainly those involving continuous-time stochastic processes, we have tried at least to provide some motivation and intuitive reasoning for the results.

Exercises appear at the end of each chapter. In Parts I and II these are divided up into different types. Type A exercises generally are those which involve direct calculation from the formulas in the book. Type B involve problems where more thought is involved. Derivations and problems which involve symbols rather than numeric calculation are normally included in Type B problems. A third type is spreadsheet exercises which themselves are divided into two subtypes. The first of these asks the reader to solve problems using a spreadsheet. Detailed descriptions of applicable Microsoft Excel[®] spreadsheets are given at the end of the relevant chapters. Readers of course are free to modify these or construct their own. The second subtype does not ask specific questions but instead asks the reader to modify the given spreadsheets to handle additional tasks. Answers to most of the calculation-type exercises appear at the end of the book.

Sections marked with an asterisk * deal with more advanced material, or with special topics that are not used elsewhere in the book. They can be omitted on first reading. The exercises dealing with such sections are likewise marked with *, as are a few other exercises which are of above average difficulty.

There are various ways of using the text for university courses geared to third or fourth year undergraduates, or beginning graduate students. Chapters 1 to 8 could form the basis of a one-semester introductory course. Part IV is for the most part independent of the first three parts, except for the background material on stochastic processes given in Chapter 18 and would constitute another one-semester course. The rest of the book constitutes roughly another two semesters worth of material, with possibly some omissions; Chapter 13 is not needed for the rest of the book. Chapters 7 (except for Section 7.3.1), 9 and 12 deal with topics that are important in applications, but which are used minimally in other parts of the text. They could be omitted without loss of continuity.

CHANGES IN THE THIRD EDITION

There are several additions and changes to the third edition.

The most notable is a new Chapter 20 providing an introduction to the mathematics of financial markets. It has been long recognized that knowledge of this subject is essential to the management of financial risk that faces the actuary of today.

Other additions include the following:

- Chapter 12, on expenses, has been considerably enlarged to include the topic of profit testing.
- The chapter on multi-state models has been expanded to include discussion of reserves and profit testing in such models, as well as several additional techniques for continuous-time problems.
- Some extra numerical procedures have been included, such as Euler's method for differential equations, and the three-term Woolhouse formulas for fractional annuity approximations.
- An introduction to Brownian motion has been added to the material on continuous-time stochastic processes.
- The previous material on universal life and variable annuities has been rewritten and included in a new chapter dealing with miscellaneous topics. A brief discussion of pension plans is included here as well.
- Additional examples, exercises, and clarification have been added to various chapters.

As well as the changes there has been a reorganization in the material The previous two chapters on stochastic processes have been combined into one and now appear earlier in the book as background for the multi-state and financial markets chapters. In the current Part IV, the detailed descriptions of the various distributions have been removed and added as a section to the Appendix on probability theory.

Acknowledgements

Several individuals have assisted in the various editions of this book. I am particularly indebted to two people who have made a significant contribution by providing a number of helpful comments, corrections, and suggestions. They are Virginia Young for her work on the first edition, and Elias Shiu for his help with the third edition.

There are many others who deserve thanks. Moshe Milevsky provided enlightening comments on annuities and it was his ideas that motivated the credit risk applications in Chapter 10, as well as some of the material on generational annuity tables in Chapter 9. Several people found misprints in the first edition and earlier drafts. These include Valerie Michkine, Jacques Labelle, Karen Antonio, Kristen Moore, as well as students at York University and the University of Michigan. Christian Hess asked some questions which led to the inclusion of Example 21.10 to clear up an ambiguous point. Exercise 18.13 was motivated by Bob Jewett's progressive practice routines for pool. My son Michael, a life insurance actuary, provided valuable advice on several practical aspects of the material. Thanks go to the editorial and production teams at Wiley for their much appreciated assistance. Finally, I thank my wife Shirley who provided support and encouragement throughout the writing of all three editions.

About the companion website

This book is accompanied by a companion website:

www.wiley.com/go/promislow/actuarial

The website includes:

- A variety of exercises, both computational and theoretical
- Answers, enabling use for self-study.

Part I THE DETERMINISTIC LIFE CONTINGENCIES MODEL

1

Introduction and motivation

1.1 Risk and insurance

In this book we deal with certain mathematical models. This opening chapter, however, is a nontechnical introduction, designed to provide background and motivation. In particular, we are concerned with models used by actuaries, so we might first try to describe exactly what it is that actuaries do. This can be difficult, because a typical actuary is concerned with many issues, but we can identify two major themes dealt with by this profession.

The first is *risk*, a word that itself can be defined in different ways. A commonly accepted definition in our context is that risk is the possibility that *something bad* happens. Of course, many bad things can happen, but in particular we are interested in occurrences that result in *financial loss*. A person dies, depriving family of earned income or business partners of expertise. Someone becomes ill, necessitating large medical expenses. A home is destroyed by fire or an automobile is damaged in an accident. No matter what precautions you take, you cannot rid yourself completely of the possibility of such unfortunate events, but what you can do is take steps to mitigate the financial loss involved. One of the most commonly used measures is to purchase insurance.

Insurance involves a sharing or pooling of risks among a large group of people. The origins go back many years and can be traced to members of a community helping out others who suffered loss in some form or other. For example, people would help out neighbours who had suffered a death or illness in the family. While such aid was in many cases no doubt due to altruistic feelings, there was also a motivation of self-interest. You should be prepared to help out a neighbour who suffered some calamity, since you or your family could similarly be aided by others when you required such assistance. This eventually became more formalized, giving rise to the insurance companies we know today.

With the institution of insurance companies, sharing is no longer confined to the scope of neighbours or community members one knows, but it could be among all those who chose to purchase insurance from a particular company. Although there are many different types

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

Companion website: http://www.wiley.com/go/actuarial

Fundamentals of Actuarial Mathematics, Third Edition. S. David Promislow.

of insurance, the basic principle is similar. A company known as the *insurer* agrees to pay out money, which we will refer to as *benefits*, at specified times, upon the occurrence of specified events causing financial loss. In return, the person purchasing insurance, known as the *insured*, agrees to make payments of prescribed amounts to the company. These payments are typically known as *premiums*. The contract between the insurer and the insured is often referred to as the *insurance policy*.

The risk is thereby transferred from the individuals facing the loss to the insurer. The insurer in turn reduces its risk by insuring a sufficiently large number of individuals, so that the losses can be accurately predicted. Consider the following example, which is admittedly vastly oversimplified but designed to illustrate the basic idea.

Suppose that a certain type of event is unlikely to occur but if so, causes a financial loss of 100 000. The insurer estimates that about 1 out of every 100 individuals who face the possibility of such loss will actually experience it. If it insures 1000 people, it can then expect 10 losses. Based on this model, the insurer would charge each person a premium of 1000. (We are ignoring certain factors such as expenses and profits.) It would collect a total of 1 000 000 and have precisely enough to cover the 100 000 loss for each of the 10 individuals who experience this. Each individual has eliminated his or her risk, and in so far as the estimate of 10 losses is correct, the insurer has likewise eliminated its own risk. (We comment further on this statement in the next section.)

We conclude this section with a few words on the connection between insurance and gambling. Many people believe that insurance is really a form of the latter, but in fact it is exactly the opposite. Gambling trades certainty for uncertainty. The amount of money you have in your pocket is there with certainty if you do not gamble, but it is subject to uncertainty if you decide to place a bet. On the other hand, insurance trades uncertainty for certainty. The uncertain drain on your wealth, due to the possibility of a financial loss, is converted to the certainty of the much smaller drain of the premium payments if you insure against the loss.

1.2 Deterministic versus stochastic models

The example in Section 1.1 illustrates what is known as a *deterministic* model. The insurer in effect pretends it will know exactly how much it will pay out in benefits and then charges premiums to match this amount. Of course, the insurer knows that it cannot really predict these amounts precisely. By selling a large number of policies they hope to benefit from the diversification effect. They are really relying on the statistical concept known as the 'law of large numbers', which in this context intuitively says that if a sufficiently large number of individuals are insured, then the total number of losses will likely be close to the predicted figure.

To look at this idea in more detail, it may help to give an analogy with flipping coins. If we flip 100 fair coins, we cannot predict exactly the number of them that will come up heads, but we expect that most of the time this number should be close to 50. But 'most of the time' does not mean always. It is possible for example, that we may get only 37 heads, or as many as 63, or even more extreme outcomes. In the example given in the last section, the number of losses may well turn out to be more than the expected number of 10. We would like to know just how unlikely these rare events are. In other words, we would like to quantify more precisely just what the words 'most of the time' mean. To achieve this greater sophistication a stochastic model for insurance claims is needed, which will assign probabilities to the occurrence of

various numbers of losses. This will allow adjustment of premiums in order to allow for the risk that the actual number of losses will deviate from that expected. We will however begin the study of actuarial mathematics by first developing a deterministic approach, as this seems to be the best way of learning the basic concepts. After mastering this, it is not difficult to turn to the more realistic stochastic setting.

We will not get into all the complications that can arise. In actual coin flipping it seems clear that the results of each toss are independent of the others. The fact that one coin comes up heads, is not going to affect the outcomes of the others. It is this independence which is behind the law of large numbers, and which results in outcomes that are usually close to what is expected. There are some risks, often referred to as systematic or non-diversifiable, where the independence assumption fails, and which can adversely affect all or a large number of members of a group at the same time. For example, a spreading epidemic could cause life or health insurers to pay more in claims than they expected. Selling more policies in order to diversify would not help their financial situation. It could in fact make it worse, if the premiums were not sufficient to cover the extra losses. Severe climatic disturbances causing storms could impact property insurance in the same way. In 2008, falling real estate prices in the United States affected mortgage lenders and those who insured mortgage lenders against bad debts, to the extent that this helped trigger a global financial crisis. A detailed discussion of these matters is not within the scope of this work, and for the most part, the stochastic model we present will confine attention to the usual insurance model where the risks are considered as independent. It should be kept in mind however that the detection and avoidance of systematic risk are matters that the actuary must always be aware of.

1.3 Finance and investments

The second theme involved in an actuary's work is finance and investments. In most of the types of insurance that we focus on in this book, an additional complicating factor is the long-term nature of the contracts. Benefits may not be paid until several years after premiums are collected. This is certainly true in life insurance, where the loss is occasioned by the death of an individual. Premiums received are invested and the resulting earnings can be used to help provide the benefits. Consider the simple example given above, and suppose further that the benefits do not have to be paid until 1 year after the premiums are collected. If the insurer can invest the money at, say, 5% interest for the year, then it does not need to charge the full 1000 in premium, but can collect only 1000/1.05 from each person. When invested, this amount will provide the necessary 1000 to cover the losses. Again, this example is oversimplified and there are many more complications. We will, in the next chapter, consider a mathematical model that deals with the consequences of the payments of money at various times. A much more elaborate treatment of financial matters, incorporating randomness, is presented in Chapter 20.

1.4 Adequacy and equity

We can now give a general description of the responsibilities of an actuary. The overriding task is to ensure that the premiums, together with investment earnings, are *adequate* to provide for the payment of the benefits. If this is not true, then it will not be possible for the insurer to

meet its obligations and some of the insureds will necessarily not receive compensation for their losses. The challenge in meeting this goal arises from the several areas of uncertainty. The amount and timing of the benefits that will have to be paid, as well as the investment earnings, are unknown and subject to random fluctuations. The actuary makes substantial use of probabilistic methods to handle this uncertainty.

Another goal is to achieve *equity* in setting premiums. If an insurer is to attract purchasers, it must charge rates that are perceived as being fair. Here also, the randomness means that it is not obvious how to define equity in this context. It cannot mean that two individuals who are charged the same amount in premiums will receive exactly the same back in benefits, for that would negate the sharing arrangement inherent in the insurance idea. While there are different possible viewpoints, equity in insurance is generally expected to mean that the mathematical expectation of these two individuals should be the same.

1.5 Reassessment

Actuaries design insurance contracts and must initially calculate premiums that will fulfill the goals of adequacy and equity, but this is not the end of the story. No matter how carefully one makes an initial assessment of risks, there are too many variables to be able to achieve complete accuracy. Such assessments must be continually re-evaluated, and herein lies the real expertise of the actuary. This work may be compared to sailing a ship in a stormy sea. It is impossible to avoid being blown off course occasionally. The skill is to detect when this occurs and to take the necessary steps to continue in the right direction. This continual monitoring and reassessing is an important part of the actuary's work. A large part of this involves calculating quantities known as *reserves*. We introduce this concept in Chapter 2 and then develop it more fully in Chapter 6.

1.6 Conclusion

We can now summarize the material found in the subsequent chapters of the book. We will describe the mathematical models used by the actuary to ensure that an insurer will be able to meet its promised benefits payments and that the respective purchasers of its contracts are treated equitably. In Part I, we deal with a strictly deterministic model. This enables us to focus on the main principles while keeping the required mathematics reasonably simple. In Part II, we look at the stochastic model for an individual insurance contract. In Part III, we look at more advanced stochastic models and introduce the mathematics of financial markets. In Part IV, we consider models that encompass an entire portfolio of insurance contracts.

2

The basic deterministic model

2.1 Cash flows

As indicated in the previous chapter, a basic application of actuarial mathematics is to model the transfer of money. Insurance companies, banks and other financial institutions engage in transactions that involve accepting sums of money at certain times, and paying out sums of money at other times.

To construct a model for describing this situation, we will first fix a time unit. This can be arbitrary, but in most applications it will be taken as some familiar interval of time. For convenience we will assume that time is measured in years, unless we indicate otherwise. We will let time 0 refer to the present time, and time t will then denote t time units in the future. We also select an arbitrary unit of capital. In this chapter, we assume that all funds are paid out or received at integer time points, that is, at time 0, 1, 2, The amount of money received or paid out at time k will be called the *net cash flow* at time k and denoted by c_k . A positive value of c_k denotes that a sum is to be received, whereas a negative value indicates that a sum is paid out. The entire transaction is then described by listing the sequence of cash flows. We will refer to this as a *cash flow vector*,

$$\mathbf{c} = (c_0, c_1, \dots, c_N),$$

where N is the final duration for which a payment is made.

For example, suppose I lend you 10 units of capital now and a further 5 units a year from now. You repay the loan by making three yearly payments of 7 units each, beginning 3 years from now. The resulting cash flow vector from my point of view is

$$\mathbf{c} = (-10, -5, 0, 7, 7, 7).$$

From your point of view, the transaction is represented by $-\mathbf{c} = (10, 5, 0, -7, -7, -7)$.

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

Companion website: http://www.wiley.com/go/actuarial

Fundamentals of Actuarial Mathematics, Third Edition. S. David Promislow.

8 THE BASIC DETERMINISTIC MODEL

One of our main goals in this chapter is to provide methods for analyzing transactions in terms of their cash flow vectors. There are several basic questions that could be asked:

- When is a transaction worthwhile undertaking?
- How much should one pay in order to receive a certain sequence of cash flows?
- How much should one charge in order to provide a certain sequence of cash flows?
- How does one compare two transactions to decide which one is preferable?

All of these questions are related, and we could answer all of them if we could find a method to put a value on a sequence of future cash flows. If all cash flows were paid at the same time, or if the value of money did not depend on the time that a payment was made, the problem would reduce to one of simple addition. We could simply value a cash flow sequence by adding up all the payments. We cannot proceed in this naive way, however and must consider the *time value of money*. It is a basic economic fact that we prefer present to future consumption. We want to eat the chocolate bar now, rather than tomorrow. We want to enjoy the new car today, rather than next month. This means of course that money paid to us today is worth more than money paid in the future. We are no doubt all very familiar with this fact. We pay interest for the privilege of borrowing money today, which lets us consume now, or we advance money to others, giving up our present consumption and expecting to be compensated with interest earnings. In addition, there is the effect of risk. If we are given a unit of money today, we have it. If we forego it now in return for future payments, there could be a chance that the party who is supposed to make remittance to us may be unable or unwilling to do, and we expect to be compensated for the possible loss. A major step in answering the above questions is to quantify this dependence of value on time.

Readers who have taken courses on the theory of compound interest will be familiar with many of the ideas. However, our treatment will be somewhat different than that usually given. One reason for this is that we want to develop the concepts in such a way that they are applicable to more general situations, as given in Chapters 3–5. A second reason is that our approach is designed to be compatible with modern-day computing methods such as spreadsheets.

To conclude this section, we remark that many complications arise when the cash flows are not exactly known in advance. They may depend on several factors, including random elements. There may be complicated interrelationships between the various cash flows. These matters involve advanced topics in finance and actuarial mathematics and for the most part will not be dealt with in this book. In Part I we deal mainly with a simplified model, where all cash flows are fixed and known in advance. In later parts of the book we will consider certain aspects of randomness, but will not get into the full extent of complications that can arise.

2.2 An analogy with currencies

To motivate the basic ideas, we will consider first a completely different problem, which is nonetheless related to that introduced above. Suppose that I give you 300 Canadian dollars, 200 US dollars and 100 Australian dollars. How much money did I give you? It would be naive indeed to claim that you received 600 dollars, for clearly the currencies are of different value. To answer the question we will need conversion factors that allow us to deduce the

value of each type of dollar in terms of others. Let v(c, u) denote the value in Canadian dollars of one US dollar. Assume that v(c, u) = 1.05, which means that a US dollar is worth 1.05 Canadian dollars. (Our numbers here are for purposes of illustration only. They are close to the conversion rates at the time of writing, but they may well have changed considerably by the time you are reading this.) Similarly, letting *a* stand for Australian, we will assume that v(c, a)equals 0.95, which means 95 cents Canadian will buy one Australian dollar. The convention we are using here, which should be noted for later use, is that the *v* function returns the value of *one* unit of the *second* coordinate currency in terms of the *first* coordinate currency.

There are four more conversion factors of interest, but an important fact is that they can all be deduced from just these two (or indeed from any two that have a common first or common second coordinate). We note first that if it takes 1.05 Canadian dollars to buy 1 US dollar, then a single Canadian dollar is worth 1/1.05 = 0.9524 US dollars. That is,

$$v(u, c) = v(c, u)^{-1} = 0.9524,$$
 $v(a, c) = v(c, a)^{-1} = 1.0526,$

where we use similar reasoning for the Australian dollar.

Next consider v(u, a). We want the amount of US dollars needed to buy one Australian dollar. We could conceivably effect this purchase in two stages, first using US money to buy Canadian, and then using Canadian to buy Australian. Working backwards, it will take 0.95 Canadian to buy 1 Australian, and it will take v(u, c) 0.95 US dollars to buy the 0.95 Canadian. To summarize,

$$v(u, a) = v(u, c)v(c, a) = 0.9048.$$

Our calculations are completed with

$$v(a, u) = v(u, a)^{-1} = 1.1052.$$

The reader may notice, given a typical real-life listing of currency prices, that the relationships we state here do not hold exactly, but that is due to commissions and other charges. In the absence of these, they must necessarily hold.

Let us now return to the original problem of determining of how much I paid you. We must first select a currency to express the answer in. For example, we could say that the total was equivalent to 300 + 200v(c, u) + 100v(c, a) = 605 Canadian dollars. We could also say that the total was equivalent to 300v(u, c) + 200 + 100(u, a) = 576.20 US dollars. Notice as a shortcut, that we did not need to compute the latter sum (which could be a significant saving in calculation if we had several rather than just three currencies). If the total amount is equivalent to 605 Canadian, then it must also be equivalent to 605v(u, c) = 576.20 US dollars. Similarly, the total in Australian dollars can be computed as 605v(a, c) or alternatively as 576.20v(a, u), both of which are equal to 637 (approximately as there are some rounding differences).

2.3 Discount functions

We now go back to the original situation. We want to value a sequence of cash flows, which are all in the same currency, but which are paid at different times. Conversion factors are needed to convert the value of money paid at one time to that paid at another. The principles involved